Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract A necessary condition for the generation of Geomagnetically Induced Currents (GICs) that can pose hazards for technological infrastructure is the occurrence of large, rapid changes in the magnetic field at the surface of the Earth. We investigate the causes of such events or “spikes” observed by SuperMAG at auroral latitudes, by comparing with the time‐series of different types of geomagnetic activity for the duration of 2010. Spikes are found to occur predominantly in the pre‐midnight and dawn sectors. We find that pre‐midnight spikes are associated with substorm onsets. Dawn sector spikes are not directly associated with substorms, but with auroral activity occurring within the westward electrojet region. Azimuthally‐spaced auroral features drift sunwards, producing Ps6 (10–20 min period) magnetic perturbations on the ground. The magnitude of is determined by the flow speed in the convection return flow region, which in turn is related to the strength of solar wind‐magnetospheric coupling. Pre‐midnight and dawn sector spikes can occur at the same time, as strong coupling favors both substorms and westward electrojet activity; however, the mechanisms that create them seem somewhat independent. The dawn auroral features share some characteristics with omega bands, but can also appear as north‐south aligned auroral streamers. We suggest that these two phenomena share a single underlying cause. The associated fluctuations in the westward electrojet produce quasi‐periodic negative excursions in the AL index, which can be mis‐identified as recurrent substorm intensifications.more » « less
-
Abstract During glacial terminations, massive iceberg discharges and meltwater pulses in the North Atlantic triggered a shutdown of the Atlantic Meridional Overturning Circulation (AMOC). Speleothem calcium carbonate oxygen isotope records (δ 18 O Cc ) indicate that the collapse of the AMOC caused dramatic changes in the distribution and variability of the East Asian and Indian monsoon rainfall. However, the mechanisms linking changes in the intensity of the AMOC and Asian monsoon δ 18 O Cc are not fully understood. Part of the challenge arises from the fact that speleothem δ 18 O Cc depends on not only the δ 18 O of precipitation but also temperature and kinetic isotope effects. Here we quantitatively deconvolve these parameters affecting δ 18 O Cc by applying three geochemical techniques in speleothems covering the penultimate glacial termination. Our data suggest that the weakening of the AMOC during meltwater pulse 2A caused substantial cooling in East Asia and a shortening of the summer monsoon season, whereas the collapse of the AMOC during meltwater pulse 2B (133,000 years ago) also caused a dramatic decrease in the intensity of the Indian summer monsoon. These results reveal that the different modes of the AMOC produced distinct impacts on the monsoon system.more » « less
-
null (Ed.)Madagascar and the Mascarene Islands of Mauritius and Rodrigues underwent catastrophic ecological and landscape transformations, which virtually eliminated their entire endemic vertebrate megafauna during the past millennium. These ecosystem changes have been alternately attributed to either human activities, climate change, or both, but parsing their relative importance, particularly in the case of Madagascar, has proven difficult. Here, we present a multimillennial (approximately the past 8000 years) reconstruction of the southwest Indian Ocean hydroclimate variability using speleothems from the island of Rodrigues, located ∼1600 km east of Madagascar. The record shows a recurring pattern of hydroclimate variability characterized by submillennial-scale drying trends, which were punctuated by decadal-to-multidecadal megadroughts, including during the late Holocene. Our data imply that the megafauna of the Mascarenes and Madagascar were resilient, enduring repeated past episodes of severe climate stress, but collapsed when a major increase in human activity occurred in the context of a prominent drying trend.more » « less
An official website of the United States government
